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Abstract Transpon in magnetic multilayers is considered theoretically within a quasi classical 
approach based on the Bolmann kinetic equation. The case of an in-plane electric current is 
analysed within the Wo-current model with spin mixing processes taken into account. Such 
processes decrease the resistance change at the transition from antipanllel to parallel alignment 
of the film magnetizations. Scattering by int6rfaces and surfaces is taken into account by 
appropliate spindepndent boundary conditions. 

1. IntrodUCtiOD 

The giant magnetoresistance (GMR) effect found in transition metal magnetic multilayers [ 1, 
21 results from a redistribution of the local spin-dependent electron scattering probability 
when the sublayer magnetizations rotate from the antiparallel to parallel alignment (or 
vice versa). The effect is usually described within a two-current model introduced to 
describe transport properties of ferromagnetic transition metals [3, 41. The model assumes 
two well defined spin channels for electronic transport. The channels are more or less 
independent and in first approximation one simply assumes no inter-channel transitions. 
This approximation can be justified at low temperatures. At higher temperatures, however, 
the approximation is no longer valid and one has to take into account spin mixing processes. 
In magnetic sublayers such processes result, for example, from electron scanering on the 
long-wavelength spinwave excitations 151. 

Most theoretical descriptions of the GMR effect are based on the assumption of 
independent spin channels [Cl I], which considerably simplifies the problem. However, 
to describe properly the temperature behaviour of the GMR effect in both current-in-plane 
(CIF’) and current-perpendicular to-plane (CPP) geometries one has to include those spin 
mixing processes which conserve the electron momentum [12]. Spin flip processes of diffuse 
type are simply included in the spin-dependent relaxation times. Spin mixing processes are 
particularly important in the case when the electric current flows perpendicularly to the 
sublayers, as discussed by Valet and Fert [13] in their classical model of perpendicular 
transport. 

In this paper we analyse theoretically the role of spin mixing processes in the CIP 
transport within the quasi classical approach based on the Boltzmann kinetic equation. 
Considerations are restricted to a symmetrical sandwich consisting of two ferromagnetic 
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films separated by a nonmagnetic spacer. In the limit of perfectly reflecting outer surfaces 
they apply also to infinite superlattices. The electronic properties of the system are described 
within the jellium model with a uniform and spin-independent electron potential across the 
sample. Further details of the model as well as the Boltzmann equation and some symmetry 
relations are described in section 2. The solution of the Boltzmann equation is presented 
in section 3, whereas a final expression for the magnetoresistance is derived in section 4. 
Some numerical results are presented and discussed in section 5. 

2. Boltzmann equation 

For simplicity, we consider a symmetrical sandwich structure in which two ferromagnetic 
films of thickness d, are separated by a nonmagnetic spacer of thickness d. as shown 
schematically in figure 1. The periodic part of the electronic potential is assumed constant 
across the structure and independent of the electron spin orientation. The probability 
of electron scattering from impurities located inside the films and from surface and 
interface roughness is assumed to be spin dependent and is taken into account respectively 
by appropriate  relaxation^ times, surface specularity factors and interface transmission 
coefficients. Inside the ferromagnetic films the relaxation times r,+ and T,-, respectively 
for spin majority and spin minority electrons, are generally different in contrast to the 
nonmagnetic spacer where they are assumed equal for both spin directions, T., = t.. We 
use the notation according to which the electron spin projection onto the local quantization 
axis (opposite to the sublayer magnetization) is denoted as '+' for majority electrons and '-' 
for minority electrons, whereas the projection onto the global quantization axis is denoted 
as U = t and u = J.. 

- I d . t d A  A./? d J 2  L t d d  

Figure 1. Schematic illusualion of the sandwich stwcfllre and the coordinate system used in 
this paper. 

It was shown for bulk systems [5] that those electron scattering processes which transfer 
the electron momentum between the two spin channels can be taken into account by an 
additional term in the Boltzmann equation. For systems with broken translational symmetry 
along the axis z (as in the case under consideration) this equation may be written in the 
form 

(1) 
ag,(z,v) g&v) +gu(z.v)-g-o(z.v) - lelEafo(v) +- az vzTo(Z) uzr+-(z) mu, au, . 

Here T ~ , - ,  = T- . ,~  = 7,- is the spin mixing relaxation time [5], g&, U) is the deviation 
of the Fermi-Dirac distribution function fo ( z ,  v) from the equilibrium distribution p (v ) ,  
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and it is indicated explicitly that the relaxation times depend on z. In the case considered 
here this dependence is step l i e .  One should note at this point that spin Rip scattering 
processes contribute in general to T+ and r- (diffuse scattering processes) as well as to z+- 
(electron momentum conserving scattering processes). 

Let us now apply equation (1) to the structure under consideration. Due to a discontinuity 
of the relaxation times at the interfaces, this equation has to be applied separateky to each 
sublayer and the appropriate solutious have to be joined using relevant boundary conditions. 
Before doing this let us analyse first some symmetry properties of the function g,(z, U). 
It is convenient to decompose the distribution function g,,(z, v) into two parts, g,'(z) and 
g;(z), respectively for positive and negative vz (the dependence of gz(z) on the electxon 
velocity is not indicated explicitly). For a symmetrical sandwich with the z = 0 plane being 
in the middle of the structure (see figure l), the functions g,"(z) obey the relation 

g3z)  = g 3 - z )  (3) 

for the parallel alignment and 
+ go ( z )  = g2A-z) (4) 

for the antiparallel one. It is sufficient then to calculate the distribution function only for a 
half of the structure, say for z -= 0. 

3. Distribution function 

According to what we stated above it is sufficient to calculate the distribution function for 
one of the two ferromagnetic films, say for the left one. By applying the symmetry relations 
one can then obtain the distribution function in the second film. In the following we will 
distinguish both parallel and antiparallel orientations of the film magnetizations. Consider 
first the parallel configuration. In this geometry the local quantization axes coincide with 
the global one. Inside the left magnetic layer, i.e., for -(A + dJ2) < z < (-dn/2), the 
solutions g:+(z) and g,$(z) of equations (1) can be written in the form 

(5) 

(6) 

g&(z) = A,[1+ F, I+ e T d L  m + F~*eTu~']  

&(Z) = &[Dm + CLFm ~ + e W k Z  + C"F , ," e 7 4 2 1  

where A,,, and D ,  are defined as 

and 
2 + ~ m + - / ~ m +  

2 f T,+-/Tm- 
D ,  = 
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The functions FA* and F," in (5) and (6) (their velocity dependence is not indicated 
explicitly here) will be determined later. 

Inside the nonmagnetic spacer the solution of equations (1) can be written in the form 
analogous to (5) and (6). i.e., 

(1 1) 

(12) 

g:(z) = A.[I + Fi*eez + ~:*ewZ~] 

g$(z )  = A.[& + CAFi*ei'AL + C:F:*eiU"]. 

Owing to the lack of spin asymmetry in relaxation times the parameters A., D., U:(") and 
CA(") are now of the forms 

D. = 1, (14) 

and 

c; = -1 c; = 1. (17) 
Additionally, the symmetry condition (3) together with (17) gives 

Fi% = FA- E FA (18) 

(19) F:+ = F:- = F:. 
Taking this into account we may rewrite the distribution function inside the nonmagnetic 
spacer in the form 

g $ ( z )  = A,[1 + FAe?";' + F:e";'] 
g:+(z) = A.[1 - FAed' + F:e7'~']. 

(20) 

(21) 
Consider now the antiparallel orientation of the film magnetizations with the 

magnetization of the right film reversed (figure 1). The distribution function in the left 
ferromagnetic film is still given by (5) and (6). The disii-ibution function in the right 
ferromagnetic film follows then from the symmetry relation (4). The general expressions 
(11) and (12) for the distribution function in the nonmagnetic spacer are also valid, but now 
the symmetry condition (4) leads to the relations 

Fi+ = -Fi- F' (22) 
F:* = F,- F:. (23) 

Thus, in the antiparallel alignment the distribution function in the nonmagnetic film is given 

(2) 

(25) 
For both configurations the constan& Fh*, FL*, FA and F: can be found from the 

(26) 

by 
g:?(z) = A.[1 f FAeFFOLIz + Ftew;'] 

g:&(z) = A.[1 7 FieTaiz + F:eW:']. 

boundary conditions 

g!L(zJ = pcg,,(zJ + po.-ug;-,Azs) 
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for the surface at z = zI = -(dm + d./2), and 

for the interface at z = zi = -d./2. In the above formula p,, and T, are coefficients 
which describe the spin conserving specular reflection from the surface and transmission 
across the interface. pa.-c and Tv,-r, on the other hand, describe similar electron reflection 
and transmission but with simultaneous reversal of the electron spin. Physical processes 
which contribute to pa.-n, and To,-,, are similar to those which contribute to r+--for 
example electron scattering on surface or interface spin waves. Such processes leave 
the in-plane electron momentum almost unchanged. In the following we will assume 
pa.-< = P-~. , ,  = p+- and To.-,, = T -"." T+- and by the mixing processes we will 
mean only those which contribute to r+-, p+- and T+-. In equations (27) and (28) we 
assume no specular reflection at the interfaces and the same transmission coefficients for 
electrons incident from both sides. 

Taking into account the solutions (5,  6) and (20, 21) for the parallel configuration or (5,  
6) and (24, 25) for the antiparallel one, we arrive at the following set of equations for the 
unknown parameters FA*, F,", FA and F:: 
ed.(dJ2+dd~t+ + eG(dn/2+dd~;+ - (p+ + ~-~+-)~-"6(d"/Z+d.)~;- 

m 
-@+ + pp )e--o:fdn12+dm)~;- 

m +- 
=P+ +p+-Dm - 1 (2% 

Cme 1 a' m (d /%&)FA+ + ~;~U:("./2+dm)~;+ - (p-c- + p+-)e-&(dn/2+dm)~;- 
- (p-c" + p+-)e-d~(d"/2+d~)FN- 

m m 

(p- - 1) Dm + p+- (30) 

where we introduced a parameter K defined as 

k- + r m t  + 5,- 
tm+(Cm+- + &-) 

K = r, (35) 

and the upper and lower signs in (33) and (34) refer respectively to the parallel and 
antiparallel configurations. The above set of equations can be solved either analytically 
or numerically to give FA*, FA', F i  and F{ for the two magnetization orientations. 
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4. Magnetorrsistance 

Having found the distribution function one can calculate the current density from the general 
formula 

. ,  
and consequently the resistance and magnetoresistance. On performing analytical integration 
over U = IwI and z one arrives at the following formula for the relative resistance change. 

. .  . .  

Here R+? and R ~ J  are respectively the resistances in the parallel and antiparallel 
configurations, and 

8 8  Am+ lm+- f 2Am- 
K - -d. + -dm(l + Dm)- + 21, , - 3  3 An Am+- f Am+ f Am- 

for p = tt, fl., where 

An Am+- + Am+ + Am- 

The index p distinguishes two different magnetization orientations and for clarity of notation 
it has been omitted on the right-hand side of equations (39). However, one has to bear in 
mind that for different p we have different sets of the parameters F,", P"* FA and F;. 
We have also introduced here several mean free paths according to the def%ions 

The parameters &J,,, ,3; and ,6: which occur in equations (39)  are defined similarly to the 
corresponding parameters a;, d; and a:, but with I u , ~  replaced by UF, i.e., 

and 
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n , k  
Figure 2. The influence of bulk spin mixing processes on the relative resistance change. The 
ratio AR/Ro is shown against electron mean free path An in the nonmagnetic spacer. The 
following parameters have been assumed: d, = dn = 20 A, p+ = p -  = T+ = T- = 0.9, 
p+- = T+- = 0. Nb = 5 ,  K = I and Nm = N,, = N with N as indicated. 

5. Numerical results 

Equations (29-34) determine the unknown parameters which enter equations (37-39) for 
the magnetoresistance. From the phenomenological point of view the following spin- 
dependent scattering processes can contribute to the magnetoresistance under consideration: 
(i) electron scattering on impurities and defects located inside the sublayers (so-called bulk 
scattering), (ii) diffuse scattering from rough interfaces and (iii) diffuse scattering from 
rough outer surfaces. Those scattering processes are described respectively by the following 
phenomenological parameters: A,*, T+ and p*. In a general case, the magnetoresistance 
is a superposition of all the three different terms. Similarly, one may also state that there 
are three possible spin mixing scattering processes (i) the bulk ones described by Am+ 
and An+-, (ii) the interface mixing processes described phenomenologically by 4- and the 
surface ones described by the parameters p+-.  In the following discussion we will analyse 
all those possibilities in more detail. 

5.1. Magnetoresistance of bulk origin 

Suppose first that T+~=T- and p+=p- ,  but A,+ # A,,,-. In that case the GMR effect is 
due to spin-dependent scattering from scattering centres distributed inside the films and is 
determined by a bulk spin asymmetry factor defined as 

A- Nb = -. 
.31 (45) 

The two different electric subcurrents are mixed, in general, by all the mixing processes 
described above. Figure 2 shows the relative resistance change A R / R o  in the presence of 
bulk mixing processes only (which are described by Amt- and A,+-). AR/Ro is plotted 
there against electron mean free path in the nonmagnetic spacer A, with the other mean free 
paths assumed proportional to A., 
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A,+- = NJ., = N,KA. (47) 

A..+- = NnAn (48) 
where xm is the average mean free path in the magnetic material, 

- 
Am = ;(Am+ +Am-). (49) 

In figure 2 we assumed N ,  = N, = N and different curves correspond to different values 
of N .  The case N = 00 corresponds to the limit of independent spin channels. It is evident 
that the mixing processes lower the GMR effect. For the parameters assumed in figure 2 
the spin mixing mean free paths in the magnetic and nonmagnetic films are the same. In a 
general case, however, A,+- # A..+- and one may expect that An+- is much longer than 
Am+-. The dependence of the GMR effect on both N,  and N. is presented in more detail 
in figure 3. 

0.11 

0 10 x I J 0 4 0 5 0  
" 

Figure 3. The mdo AR/Ro in the presence of bulk spin mixing processes shown against 
N,. Different curves correspond to indicated values of N. and the other parameters are 
A. =Im = 200A. Nb =5 ,&  = dn =20.&, p+ = p- = T+ = T- = 0.9andp+- = T+- = 0.  

The mixing processes may also result from coherent interface spin flip transitions 
described phenomenologically by the parameter T+-. The role of those processes in the 
GMR effect is similar to the role of bulk spin mixing processes discussed above. In figure 
4 the ratio AR/Ro is shown against A. for indicated values of the parameter T+- and no 
bulk or interface mixing transitions: For each curve the transmission coefficients T+ and 
T- were adjusted so as to keep the same probability of diffuse interface scattering. Similar 
behaviour for the surface spin mixing transitions is shown in figure 5, where T+- = 0 and 
N, = N. = CO have been assumed. 

5.2. Magnetoresistance due to spin-dependent inte$ace scattering 

Consider now the case when the GMR originates from the spin-dependent scattering by 
rough interfaces and analyse the role of various mixing processes. The relevant factor 
characterizing the GMR effect is now the spin asymmetry ratio for the probabilities of 
diffuse electron scattering from the interfaces, which can be defined as 

1 - T- - T+- 
1 - T+ - T+-' 

Ni = 
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0.12 

0.04 

T+- '0.2 

d 5 0 . 0 p  . ' 

0.00 

0 200 400 600 800 1000 
.Ip 

Figure 4. The influence of interface spin mixingoprower on the GMR effect. The ratio 
AR/&r is shown against A. for d, = d. = 20 A. p+ = p- = 0.9, p+- = 0. Different 
cuwes correspond IO indicated values of T+ and for each curve T+ and T- are taken as 
T* = 0.9 - Ti-. The olher pyameten are Nb = 5, K = 1 and N ,  = N. = m. 

0.00 I I , , , I , I , , 
0 200 . 400 .600 800 1000 

1,lAI 

Figure 5. Rolc ofsurface spin mixing processes io rhe GMR effect. AR/R" is shown again9 1, 
fordm = d. = 20 A. T, = T. = 0.9, T-. = 0. Different curves correspond 10 indiated values 
of pT.- and for cach CUNE p- and p -  arc rkcn as pr = 0.9 - pT.. The other paramcten %e 
Nb = 5 . <  = 1 m d  N,,, =N. = W .  

The GMR effect occurs now for Ni # 1 .  
In figure 6 we show the influence of the bulk mixing processes on the ratio AR/Ro .  

Different curves correspond to different values of N = N,,, = N. and it is evident that the 
bulk spin mixing processes lower the GMR effect. The same is also true for the spin mixing 
processes occuring at interfaces as well as surfaces, as is shown in figure 7. Different curves 
in this figure correspond to different values of the interface and surface mixing parameters. 
The other-parameters are adjusted so as to have the same probability of diffise scattering 
at the interfaces as well as surfaces (and consequently the same factors Ni and N, for all 
curves). 
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Figure 6. Relative resistance change ARJRo in the p-xsence of bulk spin mixing processes 
shown agniinst mean free path An for C = 4 = 2.0 A p+ = p- = 0.9, p+- = T+- = 0 
T+ = 0.5, T- = 0.9 (N, = 0.2). x = 1 and Nb = 1. Different CUNS comespond lo different 
N, = N. = N with N 3s indicated. 

Figure 7. Relative resistance change against A, for dm = dn = 20 A, p+ = p -  = 0.9 - p+-, 
T+ = 0.5 - T+-. T- = 0.9 - T+- with p+- and T+- as indicated. The other parameters are 
x = I, Nb = I and N, = N. =m. 

13. Magnetoresistance due to sugface spin-dependent scattering 

The GMR effect can also occur when there is no spin asymmetry in bulk scattering 
processes and no spin asymmetry in diffuse scattering by interface roughness (or no interface 
roughness), but there is instead some spin asymmetry in the probability of diffuse scattering 
by surface roughness. Since real structures are grown on substrates and are usually covered 
by protecting layers, the origin of this spin asymmetry is similar to that for interface 
scattering. 
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0 200 4M ~ 6M BW lo00 
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Figure 8. Magnetoresistance due to surface spin-dependent scattering. The four curves represent 
the relative resistance change A R  /RI, against mean free path in respectively for no spin mixing 
pmcesses (the upper curve), for bulk spin mixing pmcesses (the C U N ~  for p+- = T+- = 0, 
N = IO), for interface spin mixing processes (the c w e  for p+- = 0, T+- = 0.1, N = CO) and 
for surface mixing scanering (the curve for p+- = 0.1, T+- = 0. N = m). N is defined as 
N = Nm = N.. The other parameten assumed here are d ,  = dn p+ = 0.9 - p+-, 
p- = O S -  p+-, T+ = T- =0.9- T+-.-, K = I and Na = 1. 

20 

The relevant factor describing the GMR effect can now be defined as 

1 - p -  - p+- 

1 - P c  - P + - '  
N, = 

If Ns # 1, the GMR occurs also when Ni = Nb = 1. In figure 8 we present some numerical 
data showing the influence of various spin mixing processes on the GMR effect induced by 
the surface spin-dependent scattering. Different curves correspond to different values of the 
bulk, interface and surface spin mixing parameters. However, the other parameters have 
been adjusted so as to keep the same probabilities of diffuse scattering. 

6. Summary 

We have analysed in detail the role of various electron momentum conserving spin mixing 
processes in the GMR effect induced by spin-dependent probabilities of eIectron scattering 
by impurities in the bulk as well as by interface and surface roughness. Independently of 
where the mixing processes occur (in the bulk, at interfaces or at surfaces) they lead to a 
decrease of the GMR effect. The model used here assumes the same lattice potential for 
both spin directions and for all sublayers. In the future work we will use a more realistic 
model, with different lattice potentials in different sublayers and with more realistic boundary 
conditions. Such a model will be applied to available [14] as well as new experimental 
results. Despite the simplifications introduced here the model presents properly the general 
trends in the behaviour of the GMR effect and the role of various mixing processes. Our 
results show that the spin mixing processes influence the GMR effect considerably and 
that theoretical descriptions of the temperature dependence of the effect have to take those 
processes into account. 
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